
Improving I/O Bandwidth for Data-Intensive
Applications

Marcin Zukowski

Centrum voor Wiskunde en Informatica
Kruislaan 413, 1090 GB Amsterdam, The Netherlands

M.Zukowski@cwi.nl

Abstract. High disk bandwidth in data-intensive applications is usually
achieved with expensive hardware solutions consisting of a large number
of disks. In this article we present our current work on software methods
for improving disk bandwidth in ColumnBM, a new storage system for
MonetDB/X100 query execution engine. Two novel techniques are dis-
cussed: superscalar compression for standalone queries and cooperative
scans for multi-query optimization.

1 Introduction

High-performance data processing applications like OLAP, data mining and sci-
entific data analysis require high disk bandwidth to provide enough data to the
execution layer. Table 1 presents hardware details of the systems currently lead-
ing in the TPC-H 100GB benchmark [15] for the most common 4-CPU configu-
ration. These systems achieve high bandwidth thanks to a large number (42-112)
of disks typically connected through a high-end, expensive infrastructure. As a
result, storage subsystem might constitute up to 80% of the entire system cost.

Table 1. Component costs in 4-way TPC-H 100GB systems

CPUs RAM Disks

4xPower5 1650MHz (9%) 32GB (13%) 42x36GB=1.6TB (78%)
4xItanium2 1500MHz (24%) 32GB (15%) 112x18GB=1.9TB (61%)
4xXeon MP 2800MHz (25%) 4GB (3%) 74x18GB=1.2TB (72%)
4xXeon MP 2000MHz (30%) 8GB (7%) 85x18GB=1.6TB (63%)

Using over 1TB of storage for 100GB of data might be questionable in real
life situations. In many cases a simple RAID systems consisting of 4-12 drives
would probably be a more practical solution. Since the bandwidth provided by
such systems might not be sufficient for high-performance data processing, in
this article we propose a set of software techniques trying to bridge this gap.



2 Marcin Zukowski

Table 2. Execution time of TPC-H Query 1 (scale factor 1) on various systems

DBMS “X” MySQL MonetDB/MIL MonetDB/X100 hand-coded

28.1s 26.6s 3.7s 0.60s 0.22s

. . . Query tree . . .

Decompression

Disk Disk Network

X100
execution
engine

CPU

Storage

the cache
vectors fit in

Cache

returnflagshipdate
Scan

extprice

ColumnBM

Main
memory in DSM

data

���
�

���
�

���
�

1 2 3 4

5 76
1 2 3

Fig. 1. ColumnBM and X100 overview

1.1 MonetDB/X100 query engine

Our interest in improving the performance of a storage layer stems from our
recent research on X100 [2, 18], a high-performance query execution engine for
the MonetDB [1] system. Thanks to a new vectorized in-cache execution model
and a good use of modern CPU features, X100 achieves performance an order of
magnitude higher than traditional DBMS and close to hand-written solutions,
as presented in Table 2.

Due to its raw computational power, X100 exhibits unusually high band-
width requirements. As an example, TPC-H Query 6 uses 216MB of data and
is processed in MonetDB/X100 in less than 100 ms, resulting in a bandwidth
requirement of ca. 2.5GB per second. For most other queries this value is lower,
but still in the range of hundreds of megabytes per second. While such band-
width is possible in main memory scenarios, achieving similar performance for
disk-based data is a real challenge.

1.2 ColumnBM storage manager

To scale X100 performance to disk, we currently work on ColumnBM, a dedicated
storage system for MonetDB. As Figure 1 shows, it combines the bandwidth of
multiple storage devices, both disks and remote machines.



Improving I/O Bandwidth for Data-Intensive Applications 3

ColumnBM stores data using a vertically decomposed storage model [4] (DSM).
This saves bandwidth if queries scan a table without using all columns. The main
disadvantage of this model is an increased cost of updates: a single row modi-
fication results in one I/O per each influenced column. To tackle this problem
ColumnBM uses a technique similar to differential files [14]. Vertical columns are
divided into large data chunks (>1MB) that are treated as immutable objects.
Modifications are stored in the (in-memory) delta structures, and chunks are
updated only periodically. During the scan, data from disk and delta structures
are merged, providing the execution layer with a consistent state.

To further improve data bandwidth ColumnBM applies two techniques. Su-
perscalar compression allows improving performance of standalone queries by
almost-transparent data decompression. Cooperative scans coordinate the work
of multiple running queries so that they share I/O and achieve higher overall
bandwidth.

1.3 Outline

The paper is organized as follows. In Section 2 we present the compression tech-
niques introduced in ColumnBM, concentrating on memory-to-cache decompres-
sion and ultra lightweight algorithms. In Section 3 we present our recent work on
scan processing for traditional N-ary storage model (NSM) and discuss problems
related to applying this work to DSM used in ColumnBM. Finally, in Section 4
we conclude and present future work.

2 Superscalar RAM-cache compression

In I/O bound queries the CPU uses only a part of its processing power. The
remaining part can be used to decompress the data read from the disk, resulting
in a higher perceived disk bandwidth and improved overall performance:

R =

{
Br : Br

C + Br
Q ≤ 1 (I/O bound)

QC
Q+C : Br

C + Br
Q ≥ 1 (CPU bound)

r = compression ratio

B = I/O bandwidth

Q = processing bandwidth

C = decompression bandwidth

R = result query bandwidth

Compression is beneficial if the fraction of the CPU time used by the decom-
pression (Br

C ) is small. In an example scenario we use a RAID system delivering
300MB/s, compression ratio of 3, and a 3 GHz CPU. To limit the decompression
overhead to 30% of the CPU time, the decompression routines need to provide
bandwidth of C=3GB/s or higher.

2.1 Ultra lightweight compression

Traditional compression algorithms usually maximize the compression ratio at
the cost of speed, making them too expensive for a DBMS. ColumnBM in-
troduces a family of specialized compression routines that use simple and pre-
dictable code with minimized number of conditional branches. As a result they



4 Marcin Zukowski

Page
Decompressed

Compressed
Page

Disk Disk

Buffer ManagerBuffer Manager

Disk

Decompress Query
Engine

project

select

scan

Disk

Cache

Decompress

project

select

scan

Main memoryMain memory

Cache

CPU CPU

Fig. 2. Disk-to-memory and memory-to-cache decompression

execute efficiently on modern superscalar CPUs and they achieve a through-
put of over 1 GB/s during compression and a few GB/s during decompression,
beating speed-tuned general purpose algorithms like LZRW and LZO, while still
obtaining comparable compression ratios.

2.2 Memory-to-cache decompression

Most database systems employ decompression right after reading data from the
disk, storing buffer pages in an uncompressed form. As the left-hand part of Fig-
ure 2 shows, this requires data to cross the memory-cache boundary three times:
when it is delivered to the CPU for decompression, when uncompressed data is
stored back in the buffer, and finally when it is used by the query. Since such an
approach would make decompression routines memory-bound, ColumnBM stores
disk pages in a compressed form and decompresses them just before execution
on a per-vector granularity. Thus, decompression is performed on the bound-
ary between CPU cache and main memory, rather than between main memory
and disk, as presented in right-hand part of Figure 2. This approach fits nicely
the delta-based update mechanism, as merging the deltas can be applied after
decompression, and chunks need to be re-compressed only periodically.

2.3 Future research

ColumnBM compression currently concentrates on lossless compression of nu-
merical data. Preliminary experiments show the speedup of the I/O bound
TPC-H queries to be close to the compression ratio (ca. 3), proving that decom-
pression overhead is minimal. In the future we plan to work on high-performance
compression algorithms for other data types and value distributions. Moreover,
we want to investigate techniques allowing the system to decide automatically
when to compress the data and which algorithm to apply.



Improving I/O Bandwidth for Data-Intensive Applications 5

2.4 Related work

The benefits of applying compression in database systems were identified in [8,
13]. The implementation of such a system was described in [16], including query
optimization also discussed in [3]. Various forms of compression have also been
applied in commercial systems, including Oracle [12], Sybase IQ and others.

Lightweight compression in databases has been proposed in [16, 7]. In our
work we go further by using an entire family of compression algorithms spe-
cialized for various data types and value distributions. Moreover, thanks to the
CPU-friendly design our algorithms achieve significantly higher performance and
minimize the decompression overhead.

3 Cooperative scans

While compression improves performance of isolated queries, it is usually the
case that multiple queries are running at the same time competing for disk
bandwidth. If many queries process the same table, each of them issues I/O
requests independently and gets only a fraction of the available disk bandwidth.
Additionally, the buffer manager concentrates on keeping the most recently used
data in the buffer pool, possibly evicting pages that could soon be reused by a
running scan.

ScanScan CScan CScan CScanScan

ColumnBM
Buffer

Manager

Fig. 3. Scan processing in a traditional system and with cooperative scans

In [17] we described our preliminary research on the idea of cooperative scans,
presented in Figure 3. In this approach queries, instead of enforcing one partic-
ular data delivery order, cooperate to share as much bandwidth as possible. We
presented a number of variants of this idea, differing in complexity and behavior
in various scenarios. Preliminary results on PostgreSQL and ColumnBM show
that (assuming sufficient processing power) multiple queries running in paral-
lel can achieve performance close to a standalone case. For example, X100 on
ColumnBM was able to sustain the same response time processing up to 30
instances of the TPC-H Query 6.



6 Marcin Zukowski

3.1 Future research

Algorithms presented in [17] provide a solution in the case of scans over a single
relational table using an N-ary storage model (NSM). In our future research we
plan to address a few issues that make the situation more complex: scans over
multiple tables, scans over DSM tables, and compression.

When queries process multiple tables, the system needs to allocate I/O re-
sources and buffer space for each running scan. We plan to introduce an al-
gorithm that would dynamically adapt to the current system state, looking at
information like the number of interested and starving queries for each table.

With vertically decomposed tables, applying per-column scheduling is obvi-
ously not possible, as different attributes need to be delivered in the same order
to constitute a full tuple. If queries read disjoint or identical subsets of the rela-
tion attributes, these sub-relations could be processed like separate NSM tables.
For queries with only partially overlapping attributes, we plan to develop a new
scheduling algorithm that would exploit the DSM properties. For example, the
system should not only determine which vertical table chunk to read, but also
which attributes and in what order.

The final problem is related to our choice of memory-to-cache decompression
presented in Section 2.2. In the case of multiple queries reading the same page
from the buffer manager, each needs to decompress it separately, increasing
overall decompression cost. As a result, a set of queries that were I/O bound
might easily become CPU bound. Another solution would be for the first query to
materialize a decompressed page it in the buffer manager, and let the others read
uncompressed data. The choice of when to apply this strategy mainly depends
on the number of queries interested, the speed of decompression routines, and
the in-memory materialization cost.

3.2 Related work

Multi-query optimization traditionally concentrated on reusing common subex-
pression results both in materializing [9] and pipelining [5] scenarios. Various
ideas have also been proposed to improve scan performance, e.g. by allowing
a query to compute multiple results in a single scan [6], or scheduling similar
queries together [11, 10]. While we are not aware of any scientific publications
discussing ideas close to cooperative scans, similar solutions seem to have been
incorporated into commercial systems including Red Brick warehouse, Teradata
database and MS SQL Server (as shared scans). Unfortunately, no implementa-
tion details are available, making it hard to compare them to our proposal.

4 Conclusions and future work

In this article we presented the state of our research on improving disk perfor-
mance for data intensive applications. Two techniques were presented: super-
scalar compression and cooperative scans. While not fully implemented, they



Improving I/O Bandwidth for Data-Intensive Applications 7

already provide significant performance benefits. In the future we will address
the unresolved problems that were discussed, mainly automatic data compres-
sion and cooperative scans for multi-table DSM queries. We plan to evaluate our
ideas by comparing the performance of the ColumnBM storage manager working
with traditional strategies and the described extensions. We will use both micro-
benchmarks to determine the raw performance of the introduced techniques as
well as the TPC-H benchmark to simulate their behavior in real life scenarios.

References

1. P. A. Boncz. Monet: A Next-Generation DBMS Kernel For Query-Intensive Ap-
plications. Ph.d. thesis, Universiteit van Amsterdam, May 2002.

2. P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query
Execution. In Proc. CIDR, Asilomar, CA, USA, 2005.

3. Z. Chen, J. Gehrke, and F. Korn. Query optimization in compressed database
systems. SIGMOD Rec., 30(2), 2001.

4. G. P. Copeland and S. Khoshafian. A Decomposition Storage Model. In Proc.
SIGMOD, Austin, USA, 1985.

5. N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan. Pipelining in multi-query
optimization. J. Comput. Syst. Sci., 66(4), June 2003.

6. J. C. et al. NonStop SQL/MX primitives for knowledge discovery. In Proc. KDD,
San Diego, CA, USA, 1999.

7. J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing relations and indexes.
In Proc. ICDE, 1998.

8. G. Graefe and L. D. Shapiro. Data compression and database performance. In
Proc. ACM/IEEE-CS Symp. on Applied Computing, 1991.

9. S. Manegold, A. Pellenkoft, and M. L. Kersten. A Multi-Query Optimizer for
Monet. Technical Report INS-R0002, January 2000.

10. W. Müller and A. Henrich. Reducing I/O Cost of Similarity Queries by Processing
Several at a Time. In Proc. MDDE, Washington, DC, USA, 2004.

11. K. O’Gorman, D. Agrawal, and A. E. Abbadi. Multiple query optimization by
cache-aware middleware using query teamwork (poster paper). In Proc. ICDE,
San Jose, CA, USA, 2002.

12. M. Pöss and D. Potapov. Data Compression in Oracle. In Proc. VLDB, Berlin,
Germany, 2003.

13. M. Roth and S. van Horn. Database compression. SIGMOD Rec., 22(3):31–39,
September 1993.

14. D. G. Severance and G. M. Lohman. Differential Files: Their Application to the
Maintenance of Large Databases. ACM Trans. Database Syst., 1(3), 1976.

15. Transaction Processing Performance Council. TPC Benchmark H version 2.1.0,
2002. http://www.tpc.org/tpch/spec/tpch2.1.0.pdf.

16. T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The implementation
and performance of compressed databases. SIGMOD Rec., 29(3), September 2000.

17. M. Zukowski, P. A. Boncz, and M. L. Kersten. Cooperative scans. Technical
Report INS-E0411, CWI, December 2004.

18. M. Zukowski, P. A. Boncz, N. Nes, and S. Héman. MonetDB/X100: A DBMS In
The CPU Cache. IEEE Data Eng. Bull., June 2005.


